
“ae

ISSN 0265-2919

Next Week
STATE OF THE ART We scrutinise eh © The second part of our
Motorola's innovative 68000 chip 43 st cnt ascsnopg

TO THE LIMIT We look at the range of phere
add-ons available for the ZX Spectrum 50) pay) peer =

COMMANDING MOVES Unlike many ny — —_ owner
disk systems, the Commodore disk drive oY sat Win Gi icon.
does not require any computer memory however, there are cheaper

systems available.

@ Like all dialects of BASIC,
the BBC’s version has its little
quirks and command
structures that you need to
come to terms with.

ACTION REPLAY Games software that ~
allows you to formulate your own rules At

COMPUTER SCIENCE

REFINING THE PROCESS In logic
8 no ere ; evi to produce the You ¢ Cy od ey offer
simplest method of working ty

inder order form
J | will be with
FROM ALGOL TO ALPHANUMERIC : : : be
A weekly glossary of computing terms issue 5.

THE ABC OF BBC We look at the dialect
of BASIC most widely used in schools

MEMORY MONITOR We use the monitor _
program to investigate the contents of the

computer's memory

FROM LITTLE ACORNS The only British |
company to rival Sir Clive Sinclair

WORKSHOP

CRASH COURSE We begin a new series in
micro maintenance and expansion

Editor Jonathan Hilton; Art Director David Whelan; Deputy Editor Roger Ford: Production Editor Catherine Cardwell: Statf Writer Brian Morris; Picture Editor Claudia Zeff; Designer Hazel Bennington; Sub Editors Robert Pickering, keit _
Parish; Art Assistant Liz Dixon: Editorial perce malice the Malone: Researcher Helena Siedlecka: Contributors Lisa Kelly, Steven Colwill, Richard King, Martin Hayman, Roger Munford; Group Art Director Perry Neville; :

: Bench Stephen England: ee ae ares rhea Director Brian Ea pe 85 Char est lp bapeg on Editor Chris eg te Production co-ordinator lan dei Circulation Director ri _
| Director Michael Joyce; sonra Bunch Partworks Office arlotte Street, London APSIF Copenhagen 1984; © Orbis Publishing Typeset Universe epadton

pel Posey. mone ape ere

HOME COMPUTER ADVANCED COURSE ~ Price UK 80p IR £1.00 AUS $1.95 NZ $2.25 SA R1.95 SINGAPORE $4. 50 USA and CANADA $1.95 -
How to obtain your copies of HOME COMPUTER. COURSE - Copies are obtainable by placing a regular order at your newsagent, or by taking out a subscription. Subscription rates: for six months (26 issues) £23, 80; for one year 2
issues) £47.60. Send your order and remittance to Punch Subscription Services, Watling Street, Bletchley, Milton Keynes, Bucks MK2 2BW, being sure to state the number of the first issue required.
Back Numbers UK and Eire - Back numbers are obtainable from your newsagent or from HOME COMPUTER ADVANCED COURSE. Back numbers, Orbis Publishing Limited, 20/22 Bedfordbury, LONDON WC2N 4BT at cover as
AUSTRALIA: Back numbers are obtainable from HOME COMPUTER ADVANCED COURSE. Back numbers, Gordon & Gotch (Aus) Ltd, 114 William Street, PO Box 767G Melbourne, Vic 3001. SOUTH AFRICA, NEW ZEALAND, EUROPE &
MALTA: Back numbers are available at cover price from your news pe In case of difficulty write to the address in your country given for binders. South African readers should add sales tax.

binders for HOME COMPUTER ADVANCED COURSE - UK and Eire: Details of how to obtain your binders (and of our special offer) are in issue 5. EUROPE: Write with remittance of £5.00 ed binder (incl. p&p) eee to Orbis
SE BINDERS, Miller (1 te a ne AL Publishing Limited, 20/22 Bedfordbury, LONDON WC2N 4BT. MALTA: Binders are obtainable through your local newsagent price £3.95. In case of difficulty write to HOME COMPUTER ADVANCED COU

-Vassalli Street, Valletta, Malta. AUSTRALIA: For details of how to obtain your binders see inserts in early issues or write to HOME COMPUTER ADVANCED COURSE BINDERS, First Post Pty Ltd, 23 Chandos Street, St. Leonards
The binders supplied are those illustrated in the magazine. NEW ZEALAND: Binders are available through your local newsagent or from HOME COMPUTER ADVANCED COURSE BINDERS, Gordon & Gotch (NZ) Ltd, PO Box 155, Welingtn,
SOUTH AFRICA: Binders are available through any branch of Central Newsagency. In case of difficulty write to HOME COMPUTER ADVANCED COURSE BINDERS, Intermag, PO Box 57394, Springfield 2137. _
Note ~ Binders and back numbers are obtainable subject to availability of stocks, Whilst every attempt is made to keep the price of the issues and binders constant, the publishers reserve the right to increase the stated prices at any time when
circumstances dictate. Binders depicted in this publication are those produced for the UK market only and may not necessarily be identical to binders produced for sale outside the UK. Binders and issues may be subject to import dutyand/or
local taxes, which are not included in the above prices unless stated.

SCORE OGD00G LIVES 3 HIGH gOaaag
>

a

A et

Configuration Menu
This menu gives you the option
of selecting the direction of
movement of your ship or laser
base, the foreground and
background colours, how the
aliens appear, and sound
effects for all elements

Movement Menu
This allows you to determine
the attack approach. At the top
right of the screen you will see a
numbered direction chart and at
the bottom right there is a
pattern display where you can
monitor the effects

Millions of microcomputer games packages
are sold every year and the size of the
market for this ready-made software was an
indication to enterprising software houses
that there was good sales potential for
games generator packages. What is
Surprising is that so many of the games on
the market are similar to one another.

Most games played on home computers fall into
two categories: Adventure participation games,
with or without a graphic representation of the
scenario on the screen, as in The Hobbit; and the
totally screen-based ‘fantasy simulators’ such as
Space Invaders or Asteroids.

Even a cursory analysis of the two generic
types reveals the reason for their similarity. To
take the fantasy simulators first, there are two
prerequisites of the Space Invader type of game
— a firing base and a target to aim at. So if we can

<< Standard Format
[GAMES DESiGnER @1463 J.MOLLIs | The sprites will initially appear

against a plain background, 5... .S6P SIDES
following a slow and orderly eget ai pel
descent &...CURSOR pom

Final Effect EnNTES TO FiInisr

This shot shows the changes to
the original sprites and
background colour. The only
element unchanged is the cat

Vv

construct abstract versions of these two and allow
the games designer to decide independently on
the defender’s position and fire-power and the
frequency and intensity of the attack waves, then
it is feasible to produce a variety of games, each
subtly different from the next, simply by varying
the parameters. An analysis of the numerous
games with similar-sounding names produced
within a games ‘generation’ will reveal that this
philosophy has been applied by the professional
software producers.
A prime example of a software package that

allows you to do just this is John Hollis’s Games
Designer (from Software Studios/Quicksilva for
the Spectrum 48K). Games Designer offers you
eight outline games. Having selected one of them
you can change all the basic parameters
mentioned above, but it does not allow you to
build up a new game from scratch.

The package is menu-driven, and even as a
series of pre-programmed games, the Games

< Sprite Configuration
Select the appropriate co-
ordinate on the chart you want
to fill (or erase). At the bottom
of the screen you can see the
actual shape and colour of the
sprite

=
SS

IAN McKINNELL

THE HOME COMPUTER ADVANCED COURSE 41

Designer is good value for money.
Having chosen a game to be the outline for

modification, you are presented with a choice of
the type and scope of that modification, starting
with the shape and colour of the sprites used to
represent the protagonists. Even though a menu
of existing sprites is presented, this is more a
convenience than a constraint, for you are able to
start from a predefined design and change any bit
within the 12 X 12 matrix, or opt to begin with a
‘blank page’ and originate a completely new
figure. The 12 X 12 format (two characters by two
characters) results in a perfectly usable and
distinctive sprite.

Sprite definition itself is menu-driven, the
choice of available commands being displayed to
the left of the screen and a magnified image of the
sprite in question at the right. A helpful addition
is a second image of the sprite, displayed in its
actual size and colour at the foot of the text.

The next step is to define the manner in which
these sprites will move about the games ground.
This section, called Configuration, actually allows
you greater scope than simply directing the
movement of individual tokens. Following on
from this, in the order in which options are
displayed on the main menu, you are invited to
select a movement pattern for the screen tokens.
To make the movement more complex, two or
more patterns may be linked together at this
stage.
Now you have to decide on the frequency of

the attack waves and insert special effects, both
visual and audible.

Having created a game, it only remains to save
it on cassette, so that it can be played again in the
future. Here the package falls down badly, from
the user’s point of view, for it does not store a
game in playable form, but only as input
parameters to the Games Designer package itself,
rendering the exercise useless to those who might
wish to develop a game for subsequent sale.

THE QUILL
In direct contrast to Games Designer, The Quill is
oriented towards those who wish to create
Adventure gamcs and attempt to market them —
there is even a section in the comprehensive
manual headed Selling your Adventure that gives
useful hints on the steps you should take in testing
and debugging. Chief among the hints is to have
as many people as possible play the game
critically. Remarkably, the authors require
nothing more than a ‘mention somewhere in [the
game] that it was written with The Quill’ — a rare
piece of altruism.

While it is presented as a generator of
Dungeons and Dragons type games, the Quill
uses techniques more akin to those employed by
commercial database management packages. It is
divided into three main parts — the database
itself; a database editor, which allows the
parameters to be set up; and a database
interpreter, which executes the game interactively.

42 THE HOME COMPUTER ADVANCED COURSE

Just as one may analyse Space Invaders and
the like as protagonist-positioning games, so the
basis of Adventure games is the ‘conceptual
maze’: a maze that exists in more dimensions than
the purely spatial ones. Thus, in addition to
seeking the exit route the player is presented with
a list of objects, each of which is useful only in a
specific circumstance — if you never go into a
room with an empty light socket, then there is no
point in carrying a light bulb, for instance.

To make the game more interesting, a limit is
normally placed on the number of objects the
player can carry with him from place to place —

and there is nothing to stop the designer using this
artificial limit to send the player back and forth
accumulating the collection of objects that he will
need to accomplish the tasks he is set as the game
unfolds.

The first stage in constructing an Adventure
game is to map out a script and a scenario in
which the script will operate. The Quill’s manual
starts by outlining a simple game which presents
the player with a choice of ten objects in a simple
environment comprising six rooms. This game is
not embodied within the program, forcing you to
enter all the parameters outlined in the manual
before you can play it, just as you would have to if
you created your own game.

The Quill places a limit on the number of
parameters that may be used in the game, but this
is so large — 252 locations and 210 objects — that
you are unlikely to run out of options.

The package is quite capable of producing
Adventure games to rival most of those

commercially available (in fact a number of them
were written on it), but it does have its limitations.
First, it does not allow the creation of screen

graphics such as those used to good effect in The

Hobbit, for example; nor does it permit any

interaction with characters — so there is no point

in trying to create them. Apart from offering the

Adventure games player a simplified method of

composing his own games, its great strength lies in
the discipline required to use it.

Defining The Object
The Quill offers users a way of
creating Adventure games for
themselves. Similar in style to a
number of database
management packages, the
Quill requires the locations and
objects that feature in the
adventure to be defined. Object
oriented programming
techniques then allow these
assigned attributes to be called
up and displayed, or used as
parameters, whenever the
object or location features in the

game

IAN McKINNELL

Since their appearance in 1982, Motorola’s
68000 series of microprocessors, the large-
capacity successors to the much acclaimed
6809 eight-bit CPU, have captured a
significant part of the market for 16-and
32-bit processors. Selected by Sinclair to
power the QL, the 68000 is certain to
dominate 16-bit computing.

The 68000 bears a strong resemblance to the
MC6800, an earlier Motorola microprocessor
that is still widely used, particularly in peripherals
such as intelligent controllers. This means that the
much more capable 68000 is simple to interface
and has the support of a wide variety of ready-
made hardware. This includes I/O boards with
6821 PIA (Peripheral Interface Adaptor) chips,
VDUs with 6845 CRTCs (Cathode Ray Tube
Controllers), clocks using the 6840 pro-
grammable timers, and disk controllers.

Another feature of the 68000 makes it
attractive to computer designers, and that is the
width of the data and address buses. These are
completely separate from each other, and each bit
has its own pin — unlike the 8086, 8088 and

- Z8000, on which the pins are multiplexed
together: the two buses share a set of pins, signals
being interleaved and decoded at _ their
destination.

The processor can therefore run as fast as the
rest of the system will permit, and with the newer
50- or 90-nanosecond (10~’ seconds) RAM chips
this can mean a reduction, or even an elimination,
of wait states. The fastest processor in the 68000
series is the 68000L12, many aspects of which
can be run at 14 Megahertz.

Sinclair Research has used the 68000’s
successor , the 68008, in the QL. Internally this is
much the same as the others in the series, but to
make it more compatible with existing eight-bit
systems it has an eight-bit data bus rather than the
full-width 16-bit bus. Since it needs fewer pins it
comes in an ordinary 40-pin package.

Motorola is soon to. produce an even more
powerful microprocessor. The 68020 is a 32-bit
microprocessor that needs a 96-pin package, the
shape and style of which have yet to be finalised.
The 68881, a specialised floating point maths
processor with eight registers (each 80 bits wide)
that will greatly increase the amount of ‘real’ data
that can be handled, is also being planned.
A number of other chips in the 68000 series

provide I/O functions similar to those found in
earlier chips, but greatly enhanced. From the
programmer’s point of view, however, the 68000

PEitririiyiiiin

rit
aa

68000 16/32- bit areoaseor
The 68000 is able to utilise
many of the 6502/6800 series
support chips, and is built
around eight 32-bit data
registers and seven 32-bit
address registers

of its registers. There is only
one accumulator, but the whole
of memory page 0 can be used
as general-purpose registers

has many advantages over most other 16-bit
processors, owing to the symmetry of its address
and data registers and the rich instruction set.

It isn’t perfect, though. First, a distinction is
made between the address and data registers,
though they are the same size (32 bits) and in
most respects are operated upon in the same way
by the same instructions. As a result, it is often
necessary to move data from an address register
to a data register, manipulate it, and then return it
to the address register. It would have been easier
if Motorola had allowed any register to be used
for either data or addresses.

Second, there are redundancies in the
instruction set, but as these result from what
might be called ‘addressing mode cross-over’, this
isn’t critical. This phenomenon arises because the
various addressing modes are so different that
sometimes one means exactly the same as
another, despite having been arrived at by
different instructions.

In general, however, the Motorola 68000
series provides large, fast and efficient CPUs that
are becoming widely used. In the past year they
have been used in Apple’s Lisa and Mackintosh,
Sinclair’s QL, and many multi-user business
machines with lower profiles in the market.
Providing features that would have cost
thousands of pounds only a couple of years ago,
and available at a reasonable price, they seem set
to become as popular among the next generation
of machines as the Z80 and 6502 are today.

THE HOME COMPUTER ADVANCED COURSE 43

~
~~
ce
=
—
A.

abasavabatadaviiiini

LE)

in,
oy
GR eterna

yom

regis :

e-bit index registers
~ — and amuch larger

instruction set. Perhaps its
greatest advantage over the
6502 was its ability to
support the CP/M Operating
System

KEVIN JONES

Microcomputers and hi-fi audio have many
things in common. To the user there is a
further — and often annoying — point of
similarity: the high cost of installing small
ancillaries and accessories. This series
starts with soldering, to enable _ the
complete beginner to do for himself those
little jobs that otherwise might cost pounds.

Soldering, like brazing, is a method of joining two
metal objects together by means of a soft (hence,
easily melted) metallic alloy; lead and tin are used
for electronics work. The objects to be joined are
themselves heated to a temperature higher than
the melting point of solder (280° C/535'P),
solder is applied to the components, they are
brought into contact, and the heat source is
removed. As they cool down, the solder solidifies
and the joint is made.
A soldering iron applied directly to a stick of

solder will melt it almost immediately. The hot
solder will cool down almost immediately on
coming into contact with the cold component.
The result is known as a ‘dry’ joint. At best, it will
not hold together. At worst it will make a very
poor connection, perhaps even allowing an
intermittent flow of electricity. There is only one
way to prevent this imperfect joining: heat the
component until the solder melts on contact.

Useful Vices
One of the reasons why computers are part of our everyday lives
is their tiny size. Their component parts, then, are so small that
working with them can be awkward. There are a variety of
lightweight vices and grippers available at reasonable cost. If
you find the grip insufficient, try making up sleeves of masking
tape, sticky side out, to slip over the forceps-like jaws

44 THE HOME COMPUTER ADVANCED COURSE

IAN McKINNELL

Irons In The Fire
It is important to remember that
many electronic components
are sensitive to overheating.
The answer to the problem this
poses lies in the choice of
soldering iron, the size of its tip
and the diameter of the solder
used. For general purposes,
such as making up leads and
connectors, this choice is less
crucial — a 15 or 25 watt iron
and multicore solder of around
1.5mm are adequate for most
jobs and at the same time slow
enough in operation to be safe
with delicate components

Cable Stripping
Whenever cables have to be
used, the first necessity is to
strip off the insulation and
covering neatly and cleanly.
Simple cable strippers such as
the one shown here cost very
little, and can be preset to a
given cut depth, removing the
insulation cleanly but leaving
the cable itself intact

2
atl

The Right Screwdriver Coming To Grips
There are two varieties of For the beginner two types of
screwdriver: straight and cross- pliers are sufficient — heavy
head, though in the latter case it duty bull-nose pliers, which will
is necessary to differentiate probably double as wire cutters
between Philips and Pozidriv. for the heavier jobs, and much
However, in the size range used lighter, point-nose pliers for
on most home computers, the jobs that require a lighter touch
two standards are
interchangeable. You will
probably find you need both
straight and cross-head, in
perhaps a range of sizes

Cut-off Point *
Wire cutters come in two main
types, known as side cutters,
like the pair shown here, and
end cutters, whose cutting jaws
are at 90° to the plane of the
handles. In an emergency, a
pair of nail clippers might do the
job — but don’t rely on being
able to cut your nails with them
afterwards! MICHAEL BROWNLOW

Baring And Tinning
The first stage in the process of making up a lead is to bare the
wires in the cable by stripping off the insulation. Be generous.
Strip more wire than you need, and trim it back later. Hold the
cable in the vice and heat it with the iron. Apply the solder to the
cable, and when it starts to run use the iron to lead it neatly
down the whole exposed length of the cable. This process,
known as tinning, makes the later soldering process
considerably simpler — by then, the solder is on the component.

Repeat this same procedure on the plug. While the terminal
is still hot enough to run the solder, apply the tinned cable,
remove the heat source when the solder on both component and
cable have fused and run together, blow on them to cool them
below melting point, and the joint is made

Keeping In Trim

The last stage of the job is to trim off waste material. Trim cables
short, and also the terminal pins on components — but not until
the very last moment, and that means after the job has been
tested. The reason for trimming is simple — a long end of waste
cable, or a protruding terminal pin, can brush up against
something else, causing a short circuit or, worst of all, one of
those infuriating intermittent faults

THE HOME COMPUTER ADVANCED COURSE 45

KEVIN JONES

PROCESS
Simplification of Boolean algebra
expressions involves the production of
equivalent expressions that contain fewer
operators (AND, OR or NOT). This
simplification is of major importance in
logic circuit design as it provides clearly
defined methods by which the circuit may be
improved in terms of layout and economy.

‘Venn diagrams provide a useful graphical aid to
the simplification of Boolean algebra expressions
by allowing simple expressions to be drawn as
areas of shading. The area inside a rectangle
(symbolised by 1= Identity or Universal Set)
represents all the possible combinations of truth
values of the inputs, and circles within the
rectangle represent certain combinations. Here we
show some represented as'Venn diagrams:

Yj

”) A+B 8) A.B

Comparing diagrams 5 and 7 shows at a glance
that NOT(A OR B) is not the same as NOT(A)
OR NOT(B). Similarly, diagrams 6 and 8

46 THE HOME COMPUTER ADVANCED COURSE

demonstrate that NOT(A AND B) is not
equivalent to NOT(A) AND NOT(B).

Perhaps the easiest way to think of AND and
OR in terms of Venn diagrams is to think of A.B as
the area where area A ‘overlaps’ with area B; and
to regard A+B as the combined areas of A and B.
There are several self-evident relations that exist in
Boolean algebra. For each of these relations you
may try to construct a Venn diagram as proof that
they are true. (0 represents the ‘empty set’ — that is
to say an impossible combination.)

1) AA=A
2) AA=0
3) A0=0
4) A1=A
5) A(A+B)=A
6) A(A+B)=AB

LAWS OF BOOLEAN ALGEBRA
The concept of duality is.an intriguing and useful
aid to simplification, relying on the symmetry of
the operators AND and OR. To form the dual of
any true relation change all the ANDs to ORs and
vice versa, and likewise all the noughts to ones and
vice versa. For example, let us take the fifth
relation mentioned in the preceding list. The dual
of this relation is A + A.B = A. This expression is
also true. It demonstrates another important
principle, namely absorption. Looking at a Venn
diagram, it is clear to see that the A.B term lies
wholly within A, and thus can be said to have been
absorbed by A. This idea can be extended to a
three-variable case, such as A.B + A.B.C = A.B.
The following pair of Venn diagrams shows that
this is true.

A B A B

A.B A.B.C

You may like to try writing down the duals of the
other five special relations and draw Venn
diagrams to confirm their validity.

Look again at the Venn diagrams given earlier.
Comparing diagrams 5 and 8 shows us that the
following important relation is always true: A +B
= A.B. Comparing diagrams 6 and 7 shows us
that: A.B = A + B. These two relationships are
known as de Morgan’s Laws and may be applied
in more complex cases such as the case of three

ALISON FENTON

variables (A +B+C=A.B.C andA.B.C=A+
B + C). De Morgan’s laws may also be applied in
Stages:

(AFB).C
= A.B.C (using de Morgan’s Law on the

brackets)
= A+B+C (recombining using de Morgan’s

Law)
In common with normal algebra there are three
further rules that may be applied to Boolean
algebra. The associative law allows brackets to be
moved:

(A.B).C=A(B.C)=AB.C
(A+B)+C=A+(B+C)=A+B+C

The order in which the letters are written may be
changed according to the commutative law :
A.B = B.A
A+B=B+A

The distributive law allows brackets to be
multiplied out:

A(B+C)=AB+AC

EXAMPLES OF SIMPLIFICATION
1) Simplify (A+B + A.B).B
=(A.B + A.B).B (de Morgan)
=A.B.B+A.B.B. (distributive law)
=0+A.B (B.B=0,BB=B)
= A.B

2) Simplify A.B + A.B+ A.B
=A(B+B)+A.B (distributive law)
=A+AB (B+B=1)
=A+B (dual of relation 6)

3) Simplify A +B+A+B+AB
= AB+AB + A.B (de Morgan)
-AB+AB+AB (A=A)
= A.(B+B)+A.B —_(distributive law)
=A+AB (B+B=1)
SA+B (dual of relation 6)

A SIMPLIFIED XOR GATE
In the previous instalment we looked at an
unsimplified circuit for an Exclusive-OR gate. Let
us now examine the same problem again, but this
time armed with the ability to simplify the Boolean
expression and hence the circuit. The truth table
for the Exclusive-OR gate is:

INPUT OUTPUT

From the truth table we have previously decided
that C= A.B + A.B. There is little simplification

that can be made here and a five gate circuit would
be required to implement. this expression.
However, there is an alternative way of
approaching the problem. From the truth table, C
can be said to be 1 if A and B aren’t both 1 or both
0. In Boolean terms we can write down an
alternative expression for C:
CAB + AB

Using de Morgan’s Laws repeatedly we can
simplify the circuit to get:

C=(AB)(AB)
and, finally:

C=AB(A+B)

This expression requires only four gates:

A FULL ADDER CIRCUIT
Previously, we looked at the process of binary
addition and designed a simple circuit to add two
bits together and produce two outputs for the sum
and carry digits in the answer. This circuit we
called a half adder. If we call the first input X and
the second input Y, we can then verify from the
truth table for a half adder (see page 33) that the
sum (or answer) output (S) can be represented by
the expression: S = X.Y + XY. Using de
Morgan’s law this expression simplifies to:
S=X.Y.(X+ Y). The carry output (C) is simply:

In binary arithmetic there are, in fact, three
digits to be added in any one column of the
addition sum. As well as the two digits to be added
there is also a carry over from the previous column
to be included. To be able to reproduce the process
of binary addition we must design a circuit with
three inputs and two outputs. If we call the carry
from the previous column P then the truth table for
a full adder will be:

INPUTS OUTPUTS

THE HOME. COMPUTER ADVANCED COURSE 47

LIZ DIXON

Taking the cases when S = 1, an expression for S
can be formed from the truth table:

S=PXY+PXY+PAY +EPXY

Using the rules we have learned we can simplify
this expression:

» eas P(X.Y+XY)+P(X.Y+XY)
(distributive law)

S=P(X.Y+X.Y) FREY SAY)
(de Morgan)

Similarly, we can form an expression for C. From
the truth table:

C=PX.Y+PXY+PX.Y+P.X.Y
C=X.Y(P+P)+P(X.Y+XY)

(distributive law)
CeXY+P(A YAY

(Pret)

Note that X.Y + X.Y is the sum output from a half
adder circuit. Thus, a full adder circuit can be
designed from two half adders.

EXERCISE 3

1) Simplify these expressions:

a) A.(A+B)

b)X+V.(X+Y)+X.(X+Y)

c) P.Q+P.Q+P.Q

d)X+Y.Z+ZY
2) Acar alarm has an on/off switch and switches on
the two front doors. The alarm will sound if either or
both doors are opened when the on/off switch is set to
on. Draw a truth table showing the three inputs (door
A, door B, and the on/off switch) and the alarm output.
Use your truth table to write a Boolean expression for
the alarm sounding and draw a logic circuit for the
alarm system.

3) A hall light is operated from a switch at the door, a
switch at the bottom of the stairs or one at the top of
the stairs. Design a suitable logic circuit.

4) You are marooned on a desert island with two other
people. One of these people always speaks the truth,
the other always tells lies. For your own survival it is
imperative that you find out which one will tell the
truth. There are a number of questions that you could
ask one of them tu determine his or her identity. Draw
up truth tables to investigate the possible answers.
Here is an example to start you off.

‘Do you always tell the truth?’

POSSIBLE ANSWERS

POSSIBLE
IDENTITY OF
RESPONDENT

48 THE HOME COMPUTER ADVANCED COURSE

The following example shows how a series of eight
full adders combine inside the ALU to perform
the binary addition of two eight—bit numbers.

" Faysh >

1

eee
* Jo wt

0 0 1 0

Answers to Exercise 2 on page 33
1)

ALGOL
Nowadays, the home computer user has available
a reasonably large range of programming
languages, but in the days when computing was
restricted to mainframes, there were really only
three universal languages: FORTRAN, ALGOL and
cospoL. While the first was really for engineers,
and the last for business applications, it was
ALGOL (ALGOrithmic Language) that was
favoured by most scientists, mathematicians, and
those who studied computer science. Indeed,
ALGOL remains one of the most popular languages
in universities. However, it has not proved
popular with microcomputer users and _ is
available on only a limited number of low-cost
machines, perhaps the best example being the
Research Machines 380Z.

ALGOL’s strengths lie in its ability to handle
procedures, making it a highly structured
language like pAscAL; and it also features a large
vocabulary of pre-defined scientific and
mathematical functions. Oddly, the original
specification of the language made no provision
for input or output (there was no equivalent to
BAsIc’s INPUT and PRINT), with the result that
programs had to be extensively re-written from
machine to machine.

ALGORITHM
An algorithm is a method or procedure for
solving a particular problem. Algorithms
therefore exist outside the world of computing,
but their main application is now in
programming. Sometimes, writing a program
simply consists of expressing a well-known
algorithm (to find the square root of a number,
for example) in the required programming
language. More often, however, the greater part
of writing a program consists of developing an
algorithm for solving a new type of problem.
What is the algorithm, for example, to find your
way out of a maze, or to create a realistic-looking
descent of an aircraft onto a runway?

With many mathematical and statistical
problems, finding an algorithm is easy, but it is
important to find the best algorithm. Two
algorithms may produce the same result, but one
may be more economical in memory usage, while
the other is faster. One classic example is the
inversion of a matrix, essentially the extensive
manipulation of the data in a numeric array
variable. Students learn about matrices using
small arrays (say 3 X 3) and for which there is a
particularly easy algorithm. But the same
algorithm applied to a 15 X 15 array (not large in
mathematical terms) would take something like
15 million years to complete, using the fastest
available hardware! Yet a different algorithm
could finish the task in a matter of seconds.

ALLOPHONES
Allophones are concerned with verbal
communication and, hence, are important in the
field of speech synthesis. The single sound

elements that help us distinguish one word from
another are called phonemes. In English, for
example, the words ‘pat’ and ‘mat’ are
differentiated by the phonemes ‘p’ and ‘m’.
Phonemes occur in subtly different variants
called allophones; thus the slightly different
vowel sounds in ‘pat’ and ‘pad’ are allophones of
the phoneme ‘a. Speech generated from
allophones sounds artificial but is relatively
easy to program. To make things even easier,
some speech synthesis units come with a program
that will accept plain English from the keyboard
and then translate it into the allophones required.
It will, though, sometimes make mistakes on a
word like ‘row, which has two_ separate
pronunciations very dependent on context. The
method of speech synthesis that makes use of
phonémes and allophones is known as synthesis
by rule.
The other method is synthesis by analysis, in

which the computer digitises words spoken by a
human into a microphone, analyses the data for
frequency and other characteristics, and then
stores the words in condensed form. When the
words are recreated by the reverse process, the
resulting quality is very high, and it is even
possible to identify the original speaker. The
drawback is that the size of the vocabulary is
limited by the memory capacity.

IAN McKINNELL

ALPHANUMERIC
Alpha means letters of the alphabet, and numeric
refers to the digits 0 to 9, so alphanumeric is really
a technical way of saying ‘letters and numbers’. In
practice, the term also covers punctuation signs
and some of the more abstract symbols found on
a computer’s keyboard. What the term does not
cover is graphics symbols and the various non-
printable characters that some computers feature,
such as ‘carriage return’, ‘sound bell’ and ‘clear
screen. The word alphanumeric used in a
description of the operation of a software
package may be a special feature or it may be a
severe restriction. A stock control program that
allowed alphanumeric codes for each product (as
distinct from purely numeric) would fall into the
former category, while a printer with only an
alphanumeric character set would mean that your
program listings wouldn’t include any graphics
characters.

THE HOME COMPUTER ADVANCED COURSE 49

Few computer manufacturers expect to sell
a million units of any one machine; yet
Sinclair sold a million Spectrums in little
more than 15 months. Now in its third
version, the Spectrum still has some
idiosyncratic features, and a few that are
sub-standard, amongst them its keyboard,
and its limited capacity for expansion.

As a piece of hardware, the Spectrum’s most
noticeable feature is the keyboard. While it is true
to say that the configuration is QWERTY, that is
as far as its resemblance to a typewriter goes.
Each of the 40 keys is part of a membrane that
allows the keys a certain amount of travel: the
‘feel’ of the keys is yielding and ‘spongy’.

The Spectrum has a system bus connector,
which allows the user to connect the ZX Printer
(originally designed for the ZX81), the ZX
Interface 1 and the ZX Interface 2 — or all three
peripherals at once. There are also MIC and
EAR sockets, which allow cassette storage of
programs. The program loading procedure is not
very satisfactory. Although successful loading
and saving is indicated by reassuring blue and
yellow strips in the border area of the screen, in
order to save a program you must first disconnect
the EAR lead. Equally annoying is the lack of a
Reset button on the computer, which means that
whenever a system crash is experienced the
power lead must be pulled out — which could
eventually weaken the connections. Fortunately,
a number of small independent companies
produce add-on devices that incorporate both a
‘Save or Load’ switch and a Reset switch.

This is only one example of the way in which
Sinclair Research appears to have been beaten to
the mark in supporting its machine. This seems to
be deliberate company policy, however, for while
enjoying the spoils of its computer sales Sinclair
can move on to another project, such as the QL.
Even so the company has developed the ZX
Microdrives and the associated ZX Interface 1
unit, which provided the back-up storage
potential of 680 Kbytes, an RS232 port and the
concept of networking up to 64 Spectrums. There
was also the introduction of the ZX Interface 2
unit, which allows access to ROM-based software
and two joysticks to be connected.

Sinclair Research have also left the production
of software to others: having honoured certain
packages produced by independent software
houses with its seal of approval. Its library of 50
tapes covers such diverse subjects as education,
business, domestic, utilities and games.

50 THE HOME COMPUTER ADVANCED COURSE

frequency, and controls CPU

aa

ae one ae ‘fine tune’ the —
video output circuitry i in Versior ‘alae

capacitors and the tw ariable _
resistors shown. Secondly, the —] ee. a toe bare STZ vy
‘temporary modification’ tothe e® toed i Bin = Deer
Version 2 microprocessor had — tem (“ia | 2
been properly executed by the
time Version 3 was introduced.
The heat sink is in a different

eee
“se e686 ©&

place because the voltage
regulator chip has been |. J bers = ee
relocated closer to the power , hi es
input socket Sek rete te

he yy

ne
a

Main Clock Crystal
Runs at 14 MHz

Uncommitted Logic Array
This 40-pin chip replaces a wide
variety of logic chips, controls
input/output operations,
including the generation of a
composite video signal, later
modulated with a radio :

interrupts

. Jat

DHHS

~ me

eC

oes. 2b Wi
\ Pe » e773

ut nny
oe

?

seennsteeae##ses =

a

‘ . SS ae .

- id — spneeeeeemeeetntteneneneteeniiinimeiniaemenninite

Hi

® :

‘ Ov
® '

a
: “’.

apy it 1...
LA }

a ek eee
i . = 7

‘¥ .

4 — “ 7 = . a

, at

a

. = ' — , Wecescee. B:* »,

re | qa en

ECTRUM © ton? Ssur Tw

5

‘

’

’

’
4

"

: 4 ‘ me « 8
:

Y

a
a i 7 * ¥ L

C.
‘ 4 : ‘ pre .

A Oe
f & j ee

_ C .
os a) . i oe wig“ bg

a.
ze

‘4 rh — /
7 AS ae | ‘ Mes!

w
¥ r a

_ b

pm

tg Si ie Melia

‘

IAN McKINNELL

SINCLAIR
SPECTRUM
"£99. 95 (16K eee

£129.95 (48K — |
DIMENSIONS ~
233 x 144 x 30mm,
CPU
780A

MEMORY CAPACITY AND SPEED ~
16K and 48K
3.5 MHz

SCREEN CHARACTERISTICS
The screen is divided into 24 lines
of 32 characters. Bit-mapped
graphics with a 256 x 192
resolution. 16 pre-programmed
block graphics characters plus 21
user-definable graphics
characters. Eight colours plus
flash and two brightness levels.
Independent border colour

RFACES AND PORTS

System bus connector. Sockets
for cassette storage and 1V .

AVAILABLE LANGUAG 3ES

BASIC and Z80 Assembly
language. Further expansion via
software allows FORTH, LOGO,
Micro-PROLOG and many others
to be used

KEYBOARD

40 moving- key membrane ASCII
keyboard. The design allows up to
eight functions to be accessed
from one key via a series of Shift
keys

ee A
The computer comes complete
with an introductory manual and a
main manual containing a guide
to the micro’s operation as well as
advice on Sinclair BASIC

SIRENGIND
At £130 for a “BK version, the
Spectrum offers an ideal
opportunity for the newcomer to
experiment. The Spectrum is also
blessed with much greater
software and hardware support
from independent producers than
any other computer

WEAKNESS. ee

The keyboard, although never
designed, does not offer
typewriter-like facilities. The
screen display is configured in a
highly non-standard way, which
may Cause problems for the
inexperienced

The Spectrum File

In addition to the vast number
of games packages available for
the Spectrum, there is also a
very respectable body of

business and household
software on the market, much
of it priced at less than £10.
With the introduction of the ZX

Microdrive, there is no reason
at all why the Spectrum cannot
maintain large databases,
spreadsheets and word

processing applications.
Psion, one of Sinclair’s

closest collaborators in the field
of software production, has
been responsible for originating
much of this material. Most
notably it has produced the
successful VU-series of
packages, including VU-CALC,
VU-File and VU-3D. And despite
the deficiencies of the
Spectrum’s keyboard, Microl
have produced The Word

Processor, which offers storage
space for up to 10 A4 pages of
text, and most of the facilities
normally found in more*

complete text editing packages
(including the ability to merge
files)

THE HOME COMPUTER ADVANCED COURSE 51

Commodore Disk Drive

Available for both the Vic-20

and the Commodore 64, anda

standard feature of the later SX-

64 portable computer,
Commodore’s 1540 disk drive
is an intelligent unit that makes
no demands on the host
computer’s CPU or memory. In
fact, it has a processor of its
own — the same MOS
Technology 6502 that powers
the computers themselves

This controls disk formatting
and head positioning as well as
the reception and despatch of
data via the buffers _

COMMANDING
MOVES
Commodore have for many years produced
a range of 5jin floppy disk drives. All
Commodore drives are ‘intelligent’,
containing their Own microprocessor and
associated RAM. The Commodore disk
operating system (DOS) is available in
several broadly similar forms that are
resident in ROM within the drives.

The main problem with intelligent disk drives is
that they are expensive to manufacture. After the
introduction of the Vic-20 home computer,
Commodore launched an inexpensive single
drive version of its successful PET drives called
the Vic-1540. The Commodore 64 incorporates
similar facilities to the Vic-20 for accessing the
1540, but minor differences made it necessary to
carry out a POKE before using the drive and a
further POKE on completion. This tiresome
process is no longer necessary, however, as
Commodore made changes to the DOS to rectify
the defect and re-launched the 1540 as the 1541.
This newer version is fully compatible with both
the Vic-20 and the 64. For simplicity we will refer
to both drives as the 1541, as there is no difference
in the way they are used.

The 1541 is controlled via a 6502
microprocessor, two 6522 Versatile Interface
Adapters (VIAs), two Kbytes of RAM and eight
Kbytes of ROM, which contains the DOS. The
DOS ae bees is very powerful and enables

6522 Peripheral Interface
- Adaptors
These control commit ene

_ between the mother computer

1540 disk artees have their 0 own

— source of power built in ..

52 THE HOME COMPUTER ADVANCED COURSE

IAN McKINNELL

complex routines to be programmed to create
and manipulate program (PRG) files, sequential
data (SEQ) files and random access files, all with
sophisticated error-checking procedures.
Computer control is exercised via a serial version
of the IEEE488 interface. This interface supports
the same commands as its more powerful parallel
equivalent — through which the other
Commodore peripherals are controlled — and
allows serial IEEE488-fitted peripherals to be
‘daisy chained’ so that, for example, a disk drive
can output files to a printer while the computer
carries out another task. This is accomplished by
the use of commands with associated logical file
numbers and device numbers.

Diskettes are formatted into 35 tracks on a
single side, each track being arranged in sectors,
with 21 in the outermost track down to 17 in the
innermost. Each sector contains one 256-byte
block of file data plus timing, identification and
checksum data. Each diskette stores 683 blocks,
of which 664 are available to the user. This gives a
maximum capacity of approximately 170 Kbytes,
dependent on what type of files are stored. DOS
manages the distribution of data on a diskette by
maintaining a Block Availability Map (BAM)
and Directory. The BAM is stored in track 18,
sector 0 and consists of 144 bytes that signify
which blocks are in use and which are free for
storage. The Directory starts at sector 1, track 18
and is a list of a maximum of 144 files, by file
name, that contains specific information relating
to file type and how many blocks it consists of.
Both the BAM and Directory are updated as data
is written to or removed from the diskette.

Despite a high purchase price, the flexibility of
the Commodore intelligent disk drive system
gives value for money. The scope offered by its
reliable mass storage (which can be incorporated
in a peripheral management system and does not
encroach on computer memory or processor
time) justifies the expense. However, it is
unfortunate that, because of the serial interface,
the 1541 is comparatively slow in operation.
Commodore do not even quote a data transfer
rate or average access time in the user manual
supplied. Although it is in excess of 50 times
faster than cassette storage it is likely that the
1541 has the longest access time of all the popular
disk systems. If a large storage capacity is
required, it is possible to purchase an interface
that connects to the serial port and emulates the
parallel port fitted to PET computers. This does
not speed operations up particularly, but it does
enable you to connect the full range of PET
peripherals to a Vic-20 or Commodore 64.

Commodore Disk Commands
Commodore DOS supports a wide range of
commands designed to enable the user to construct
complex random access file handling programs, as
well as the usual program and data file handling
procedures. These commands are used as shown
below. In each case 8 is the identifying device
number of the disk drive.

SAVE
Creates named (up to 16 characters) program (PRG)
files that can be programs or sequential data. The
format is as follows:

SAVE“FILENAME” 8

LOAD

Constructed as»

LOAD“FILENAME”,8

This copies the specified PRG file into RAM from the
bottom of user memory upwards. The command

LOAD“FILENAME”,81

copies the specified file back into the memory
locations from which it was originally SAVEd.

LOAD“S’,8

copies the disk directory into user memory. It can
then be LISTed like a BASIC program and contains the
following:

— Diskname
2 character disk identifier
Up to 144 file names
Type (PRG or SEQ) for each file
Length of each file in blocks
Number of free blocks available

VERIFY

Constructed as:

VERIFY “FILENAME” ,8

compares the specified file with the file currently
contained in user memory and generates an error
message if they are different. Used to check if files
have been SAVEd correctly.

OPEN
Establishes a unique communication channel that is
identified with a ‘logical file number’ (LFN) within the
range 1 to 255. Up to 10 LFNs may be open at one
time. OPEN also establishes a ‘secondary address’
(SA), which determines the way the device accessed
will behave. The only disk drive secondary address is
15, which accesses the priority ‘command’ channel.
OPEN is entered as:

OPEN LFN,8,SA

CLOSE
Takes the format:

CLOSE LFN

Terminates the specified logical file. Logical files
should always be CLOSEd when they are no longer
required.

PRINT#, INPUT# AND GET#
PRINT# operates in a similar manner to PRINT
except that data is output, as a SEQ file, to the
specified OPEN logical file instead of the screen.
Constructed as:

PRINT#LEN, “DATA” or
PRINT#LFN. AS.BS. ...

In the same way, INPUT# and GET# read SEQ files.
INPUT# retrieves string data but is only effective if
the stored strings are separated by semi-colons or
commas, otherwise INPUT# will treat the data as
one long string. GET# retrieves data one byte at a
time, including semi-colons and commas. This is
most useful if the contents of a file are unknown and
not separated. The following are examples of the
command formats:

INPUT#LFN,AS,BS...
GET#LFN,AS,BS...

When PRINT# is used in conjunction with a logical
file OPENed to the command channel (e.g.
OPENLFN, 815) like this:

PRINT #LFN,8,15, “command string”

it is transformed into the most powerful disk
handling command available. Command strings are
used to implement disk maintenance commands and
advanced random access (relative — REL) file
commands. |

Disk Maintenance Commands
When used in conjunction with PRINT# or OPEN on
the command channel, in the format given, these
command strings perform these functions:

NEW
Formats and names the diskette
Constructs BAM and Directory
Assigns the 2 character disk identifier (D!)

Command:“N:DISKNAME, Dl”

INITIALISE
Checks BAM in disk RAM with BAM on disk
Command: “|”

VALIDATE
Deletes blocks allocated by advanced REL
commands not held on directory and files not
CLOSEd after they were written
Writes a new BAM

Command:“V”

RENAME
Changes the Directory listing of a specified file
Command:“R:NEWNAME=OLDNAME”
SCRATCH
Deletes specified files from disk and directory

“S:FILENAME 1,FILENAME 2...”

COPY
Writes a copy of a file on the same disk

Command:“C:DUPNAME+ORIGNAME”
Joins SEQ files and writes them as a single SEQ file
on the same disk. Known as ‘concatenating’
Command:“C:CONNAME=NAME1, NAME2.,...”

Error Checking
The front panel of the 1541

_ disk drive holds a greet:
‘power on’ LED and a red disk
condition indicating LED
where:

On = Reading from or
writing to disk
Off = Waiting for
instructions

Flashing = DOS has
detected an error

To find out the nature of the
error it is necessary to read
the DOS error channel. The
following program prints the
error codes generated by
DOS. A list of error codes and
their meanings is given in the
disk drive user manual.

10 REM**DISK ERROR
CHECK **

20 OPEN15,815
30 INPUT #15,EN,EMS,ET,

ES
40 PRINTCHRS(147)
90 PRINT“ERROR NO”EN
60 PRINTEMS
70 PRINT“TRACK”ET
80 PRINT“SECTOR”ES
90 CLOSE15:END

THE HOME COMPUTER ADVANCED COURSE 53

BETWEEN THE LINES | |

THE ABC OF BBC
We continue our appraisal of the built-in
BASIC of the most popular home computers
by looking at BBC sasic. This dialect is as
full of fascinating abilities and facilities as
the machine itself; and just as the BBC
Micro marked a new phase in the design of
home computers, so BBC asasic_ is
considered amongst the best of the dialects. Se a a
The criticism most often made of BAsic is that it is
an unstructured language that encourages (or at
least does nothing to check) bad programming
habits in the beginner, especially the ‘quick and
dirty’ approach to problem solving, which leads,
for example, to undisciplined use of GOTO.

The use of ELSE with the IF.. THEN statement can
eliminate the commonest use of GOTO, by
permitting both true and false cases of a condition
to be dealt with in the same statement. For
example, these lines:

1500 IF TEST >0 THEN GOTO 1800
1600 PRINT “VALUE OUT OF RANGE”
1700 GOTO 1900
1800 PRINT “NO PROBLEM”
1900 NEXT L

can be replaced by:

1500 IF TEST>0 THEN PRINT “NO PROBLEM”
ELSE PRINT “VALUE OUT OF RANGE”

1900 NEXT L

GOSUB usually takes a line number as its
argument, which has two disadvantages — first,
GOSUB 1000, for example, gives no clue as to the
purpose of the subroutine at line 1000; and
second, specifying line numbers makes the
program very difficult to renumber or merge.

GOSUB, like GOTO, is relatively slow in
execution because the specified line has to be
searched for in the program every time the
instruction is obeyed.
BBC sasic’s functions and procedures answer

these objections. Both are subroutine-like blocks
of code, but are called by name rather than line
number, so they can be self-documenting, or at
least meaningful in the list, and need not be
affected by subsequent renumbering or merging.
Furthermore, function and procedure calls are
generally executed more quickly than the GOSUB
and GOTO commands.

Procedures and functions begin with DEF PROC
or DEF FN, followed by a name, and usually (but
not necessarily) a parameter list. For example:

54 THE HOME COMPUTER ADVANCED COURSE

1200 DEF FNcalc(a,b,c)=(a-b)*c/100 and

2500 DEF PROCoperate(w,xS, yS,z)

The definition will use these parameters as if they
were program variables. When the program calls
the function or procedure, however, the
parameters, or dummy variables, may be
replaced by any variable number or literal
expression of the same data type as the original
parameter. For example:

250 result=FNcalc (price,cost12)or

945 PROCoperate (6, namesS, “smith” array(12))

The values of the parameters are then used in
place of the dummy variables in the definition.
Notice that a function can be used in an
expression as if it were a variable or arithmetic
quantity, whereas a procedure call must be used
as if it were a BASIC command. The LOCAL
command, which defines variables for use
exclusively inside the definition block, removes
the chance of a common subroutine bug. For
example, consider this code:

100 FOR K=1 TO 10:GOSUB 500:NEXT K:END
900 FOR K=1 TO 5:PRINT“****”:NEXT:RETURN

Here the variable K is used as the loop counter in
the main program line 100, and again in the
subroutine in line 500 — an oversight that will
seriously affect execution, but which can be
extremely difficult to avoid (or to trace in a long
program). In a BBC procedure, however, this
danger is avoidable:

100 FOR K=1 TO 10:PROCstars:NEXT:END
500 DEF PROCstars
520 LOCAL K

540 FOR K=1 TO 5:PRINT“****”:NEXT
560 ENDPROC

The LOCAL command means that between lines
500 and 560 the variable K is a new variable,
independent of the variable K anywhere else in
the program, and having no effect on the value of
K elsewhere. (Notice that PROCstars is a procedure
without parameters.)

REPEAT..UNTIL is a loop structure in which
iteration continues until the conditional
expression that follows the word UNTIL is true;
control then passes to the statement after UNTIL .
For example:

200 DATA 12,234,31,45,65,0,76,81
250 REPEAT

300 READ number:sum=sum+number
350 UNTIL number=0
400 PRINT “Sum is ”:sum

sees dabeen eceaien iaebdiaemerimaa tain teeta tenet eee a ee Sa pede ae

pa ea eae

This is much more readable, and is much less
prone to error than either a GOTO loop or a
dummy FOR..NEXT loop.
BBC sasic has the useful debugging aids

TRACE, ON ERROR..., and ERL. TRACE causes
program line numbers to be displayed on the
screen as they are executed; ON ERROR GOTO (or
GOSUB), means that any normally fatal error
(including pressing the ESCAPE key) during
program execution will cause control to pass to a

BBC Graphics —
The BBC BASIC commands that relate directly to
graphics are:

MODE
This selects the computer display mode with MODE
N where N = 0 to 7:

160x256
text only
320x256
160x256
text only
Teletext

BBC Model A computers can access only modes 4, 5,
6 and 7; Model B has access to all modes. In modes 0
to 6, the character set can be changed by the user
with the VDU command. Mode 7 Teletext characters
are fixed and don’t correspond to standard ASCII
code. |

COLOUR
This sets one of 16 colours for text and background
according to the mode selected with:

COLOUR N | ; |
where N is 0 to 15 for text colours and 128 to 143 for
background colours. The colours set by each value of
N do not remain constant from mode to mode. Lists
of N values related to colours for each mode are given
in the user guide.

VDU
This is a highly useful command. VDU A is equivalent
to PRINT CHRS(A). Similarly, VDU A,B,C has the
same effect as PRINT CHRS(A); CHRS(B); CHRS(C):.

_ This means that the many complex text and graphics
routines under the control of the 32 CHRS codes,
duplicating the effects of most of the graphics-related
BASIC commands, can be constructed with a small
number of VDU commands.

CLG
This clears the graphics area of the current screen
and moves the cursor to its ‘home’ position at the
bottom left of the screen.

CLS

This clears the text area of the screen and moves the

user-defined error-handling routine (such as a
dump of all variable values). ERL is a system
variable containing the number of the line on
which an error occurred.

The BBC has a wealth of unique extensions to
BASIC, such as the Operating System calls, the VDU
command, the various system variables and the
Assembler, which are themselves sufficiently
complex to be the subjects of individual articles
later in the course.

text cursor to its ‘home’ position at top left. Any
graphics on the screen will also be cleared.

DRAW |

This draws lines on the screen in modes 0, 1, 2. 4 and
5. Constructed as:

DRAW X,Y

The point defined by the X and Y co-ordinates is the
end of the line. The starting point can be either the
end point of the last line drawn, or a point defined by
a MOVE command.

GCOL .
This sets the current graphics foreground and
background colours with:

GCOLN,M

_ where N sets how colour is to be used (0 to 4) and
M defines the logical colour using the same
principles as COLOUR. N has the following effects:

0 - Plot the colour specified by M
1-OR M colour with present colour
2 - AND M colour with present colour
3 - Exclusive—OR M colour with present colour
4 — Invert present colour

MOVE |
This positions the graphics cursor to a specified
point with:

MOVE X,Y

Ithas the same effect as DRAW but without drawing a
line.

PLOT
This can be used for many graphic functions
including point, line and triangle drawing.
Constructed as:

PLOI RAY

where K defines the type of graphic PLOTted. K takes
values in the range 0 to 225 to specify the type of
lines to be drawn and the colours they take according
to lists given in the user guide.

POINT
This gives the number relating to the logical screen
colour of the specified screen co-ordinate with:

NUMVAR = POINT(X,Y)

where NUMVAR is a numeric variable.

THE HOME COMPUTER ADVANCED COURSE 55

tay LT

The hexadecimal number system appears
to be a complicated and cumbersome
alternative to our everyday decimal, but it
is in fact an extremely useful and easily
understood way of dealing with memory
addresses and their contents when faced
with the limitations of an eight-bit byte
system of memory.

At this point in the Machine Code course, it’s
worth returning to the question of number
representation. We are already familiar with the
decimal (or denary) number system which we use
most of the time, and we've investigated the
binary system (see page 18). It is well to
remember that both the decimal and binary
systems are simply alternative expressions of the
same concept — number. Most human beings, for
example, have the same number of fingers per
hand. You may say that the number is five, and
someone else may call it fuinf, or cing, or pente;
but a moment's empirical investigation will show
that youre all talking about the same quantity or
number — it is only your representation systems
that are different. Different but equivalent. ‘There
is a one-to-one correspondence between all
numbers expressed in English and all numbers
expressed in any other language, and there is
internal consistency in all these systems.
Arithmetic yields the same results irrespective of
the language used to describe the individual
components of an arithmetic expression.

Different number systems are exactly similar to
different languages. The number of fingers on a
normal human hand is not changed by being
called funf or five, neither is it altered by being
written 5 or 101b (the b here showing that 101 is to
be interpreted as a binary number). The only
reasons for choosing one system or the other are
either custom or convenience.
We find it convenient to use decimal

representation at first because it is the number
system most commonly used around us. But it is
not the only system. Digital clocks, for example,
use a bizarre system of arithmetic: part decimal,
part modulo 60 (there are 60 minutes in an hour
and 60 seconds in a minute), and part modulo 24
(24 hours in a day). Before 1971 British money
was reckoned in units of 12 (pence in a shilling)
and 20 (shillings in a pound). Learning to use this
system took years of agonised schooling — how
many people ever really learned how to express
shillings and pence as decimal fractions of a
pound?
When talking about computers, we find it

56 THE HOME COMPUTER ADVANCED COURSE

MEMORY MONITOR
instructive to begin by talking about binary
numbers because they so closely model the
computer’s electrical operations, being simply
sequences of on-off switch states. If we only ever
wanted to talk about single-byte numbers, then
binary might serve as a complete alternative to
decimal — translating eight-bit binary into
decimal becomes surprisingly easy with a little
practice. Unfortunately, memory addresses in
particular and useful numbers in general are
usually too large to be fitted into one byte, so
computer programmers and engineers over the
years have felt the need for a number system with
the logical convenience of binary, as well as the
range of decimal. ‘Two systems have been used for
these reasons: hexadecimal and octal. The first,
now standard in microcomputing, is usually
called hex, and is based on the number 16. Octal,
based on 8, has been widely used in mainframe
computing, but is increasingly being replaced by
the hex system.

USING HEX NUMBERS
In looking at decimal and binary representation,
we have seen two consequences follow from the
choice of number base: the base is the number of
unique digits needed in the system, and it is the
multiplicative factor in the positional notation.
For instance, there are ten unique digits in
decimal (0-9), and the value of a decimal digit is
multiplied by ten each time it shifts leftwards in a
decimal number.

Hexadecimal, therefore, requires 16 unique
digits, and they are the digits 0—9 and the letters
A-F. Counting in hex is simply a matter of
working through the single digits and then re-
using them in positional notation. The hex
number after 9, therefore, is A (decimal 10); next
is B; next C; and so on until F (decimal 15). That
exhausts the single digits, so the hex number after
F is 10 (say this as: ‘one-zero hex’), which
corresponds to 16 decimal. From this we can see
how the single digits are used, and that the value
of the columns in a multi-digit hex number
increases by a factor of 16 with leftward
movement. In a decimal number we call the
columns: Units, Tens, Hundreds and Thousands.
By comparison, in a hex number the columns are:
Units, Sixteens, Two-Hundred-and-Fifty-Sixes
and __- Four-Thousand-and-Ninety-Sixes. By
comparing the changes in the binary column with
the changes in the hex column, you should be able
to see the major advantage of hex numbers: the
range of a four-bit binary number is exactly that
of a single-digit hex number (i.e. 0 to 15 decimal).
Some examples should make this clear:

Decimal Binary Hex
0 00000000 0
1 00000001 1
2 00000010 2
3 00000011 3

7 00000111 7
8 00001000 8
9 00001001 9

10 00001010 A
11 00001011 B
12 00001100 C
13 00001101 D
14 00001110 E
15 00001111 F
16 00010000 10
17 00010001 = 11

24 00011000 18
25 00011001 19
26 00011010 1A
27 00011011 1B

31 00011111 1F
32 00100000 20
33 00100001 21

The range of a single eight-bit byte number,
therefore, is eight binary digits, or two hex digits:

0 to 255 in decimal

00000000 to 11111111 in binary
0 to FF in hex

To convert a hex number into binary, therefore,
you simply express each hex digit as a four-bit
binary number. If a single-byte number is
expressed as a two-digit hex number, then the
leftmost hex digit corresponds to the four leftmost
binary bits, while the rightmost hex digit
corresponds to the four rightmost binary digits.
Splitting a byte like this gives us two ‘nybbles’ (a
nybble is half a byte). The leftmost nybble,
corresponding to the leftmost hex digit, is called
the upper or most significant nybble; and the
rightmost nybble is called the lower or least
significant nybble. Here is an example:

Upper Lower
Nybble Nybble

+f
206 = 1100 1110 = CE

ft
t

decimal binary equivalent hex equivalent

It is important to make ourselves as familiar as
possible with the hexadecimal number system,
for the simple reason that it makes eight-bit byte
manipulation much easier than if we were using
binary. Convincing yourself of this requires a
little practice, not just with number examples, but
particularly with memory addresses and the
contents of memory bytes. Once this becomes
important — and very soon it will — you'll
wonder how you ever managed in decimal.
We give programs in this instalment of the

Machine Code course, for the BBC Micro,
Commodore 64, and the Spectrum, that allow us
to look at the contents of specified bytes in
memory. These ‘Mempeek’ programs, as we
have called them, ask you first to state the ‘Start
Address’ (i.e. specify the first byte number) and
then to give the number of bytes to be looked at.
If, for example, you wished to specify byte1953
as your beginning point and request that the
contents of the four following bytes be displayed,
then the screen will show the decimal number
1953 in the leftmost column, and then list the
contents of byte1953, byte1954, byte1955 and
byte1956 in the next four columns.

Bear in mind that if the machine shows that
byte1956 contains the decimal number 175, what
we mean is that in one of the memory chips, an
area that the machine calls byte1956 carries a
pattern of eight voltage levels. If 0 volts is
represented by 0, and 5 volts by 1, then byte1956
carries the voltage pattern 10101111. This we
choose to interpret as a binary number, and its
decimal equivalent is 175.

It is vital to remember that we use an imprecise
kind of shorthand most of the time that we talk
about computers; and expanding it into physical
description is always salutary, and should help to
avoid confusion.

The contents of a byte displayed on the screen
are not the ‘actual’ contents. What we see are
character data that have been assigned to the
voltage patterns of the bytes. This means that
having interpreted the voltage patterns as binary
numbers, and having converted the binary to
decimal numbers, we are going one step further
and converting decimal numbers into characters
according to ASCII — the American Standar
Code for Information Interchange. This

_character data is displayed in the last column of
the display. This is an internationally recognised
code implemented in most computers, which
substitutes decimal numbers between 0 and 127
for all the characters on a keyboard (historically,
a teleprinter keyboard). In this code the decimal
number 65 means the upper-case character ‘A’,
66 means ‘B’, 67 means ‘C’, and so on. Among
the non-alphabetic characters, 32 means a space
character, 42 means an asterisk, 13 means the
Return Key, and so on.

The printable ASCII characters start at number
32 and finish at number 127. Codes outside that
range are undefined, or not printable, or specific
to particular machines. Because of this, when we
run the Mempeek programs, the monitor prints a
dot to represent any byte containing a number
out of range. In the next instalment of the course,
we will provide a comprehensive ASCII
character set for the values between 0 and 127.
An investigation of the ASCII character set is

particularly useful as background to a full
understanding of machine code for two
important reasons. Firstly, it reinforces the point
that how you interpret memory contents is
entirely a matter of choice. You can say that a

WULT/ (ene

THE HOME COMPUTER ADVANCED COURSE 57

ve
al

Commodore System Variables |
43,44 Start of BASIC PROGRAM

TEX!
45,46 Start of BASIC

VARIABLES
47,48 Start of BASIC ARRAYS
49,50 End of BASIC ARRAYS
51,52 Bottom of BASIC STRING

STORAGE
55,56 Top of BASIC STRING

STORAGE

Example
Use the Mempeek program
on page 59 to inspect the
contents of these bytes. As an
example, your screen display
could look like this:

43 0 8 i 8

The first column is the
address of the first byte
accessed. The second and
third columns display the
contents of byte43 and
byte44. These are the offset
and page bytes (see page 36)
of the address of the start of
the BASIC Text Area. This is
calculated as:

8*256 + 0 = 2048

The fourth and fifth columns
in the display are the offset
and page bytes for the end of
the BASIC Text Area. The
address is calculated as:

9*256 + 11 = 2315

UNUSED USER MEMORY

byte contains a number, or an address, or a coded
character, or an instruction, or whatever you like.
In any case it will be data waiting to be
interpreted. Secondly, it does give a rather more
understandable view of memory, especially those
parts of it which do actually contain character
data, some of it used by the machine’s Operating
System, and some of it used by you.

Operating System data includes all the Error
and Prompt messages — READY, for example, or

COMMODORE 64
KERNAL ROUTINES 65535),

57344

5000 oa

SMSC XOXKKS

XXX

XPOOO

End of String Storage

»

BOSSES.

PPM

Ml Ogesece erere Serereren
im 0

x 35.55.5555. 24 x?

58 THE HOME COMPUTER ADVANCED COURSE

NONSENSE IN BASIC, or START TAPE THEN PRESS
RETURN — anything that it is capable of saying to
the user has to be ASCII coded and stored in
memory. You may never have thought of that,
and it’s a revealing insight into a computer’s
limitations as an ‘intelligent’ machine. Our
intelligence is obviously different: we don’t
memorise messages like that, we simply frame a
thought and then generate an appropriate
combination of words to express it.

Co
KHKKK

4 REMEEEREEE
®

com
HHHKE IAAI

 ** |

»REM CLEAR SCREEN

»REM UPPER CASE

™ 0h 2 6 CC

he as pee eo MS

__ STARTADORESS?
ae

: 10 1 5

he leftmost col
urnn -_—S—si—Ss

100 INPUT"S

nsSA

eet ou col
umns gee

200 INPUT "NUM
E40 70 S27)

at address on, and the |
oo N

representation of the
 b and the last co f the four bytes

:

otherwise. of the bytes’ conte
n the charac

ae an : . :
 te spe

’

soe. een
 ne by just“ ad

e . : - :
490 FOR BRen

| to find where in mem
ory the interesting address '

350 HS=""

with this.
C keywords. You cer Ma res its er

500 FOR © 0 :

On
re :

|

) yi

a =

the sal Le
lia the poin

ters that
.

550 pPK=PEEK (
B+C

ki and see a

ae sate

manigaltion, lines at the start
 of

fe

and on fapha
el again, see what e

de

For Sete a o
f the Variable S

|
550 H®

vite
-

g00 NEXT ©

oa :

aso PRINT TAB

5 FOR M=1 TO 255.LET
 XS=XS+**”:NE

900 NEXT B

:

gso IF BT

;o00 NEXT LF

1050 EME KARE ER
A R IEE

:*55

kil
l

1O (SA+BN-1
) STEP 4

(32) 3H

6 THEN LP=1

HK KEI
 AF

THE HOM a & OMPUTER ADVANCED COURSE 59

Herman Hauser
COURTESY OF ACORN

Acorn Computers is the company that
produces two of the finest examples of
British home computer technology: the
BBC Micro and the Electron. Yet only a
few years ago, Acorn was a fledgling
enterprise engaged in consultancy work
and selling a few special systems from a
small office in Cambridge.

Acorn’s founder, Chris Curry, was a former
employee and close friend of Sir Clive Sinclair.
Curry had joined Sinclair Radionics in 1965,
when Sinclair had offered him a job as a
development engineer for the sum of £11 a week.

At Sinclair Radionics, Curry was put in charge
of the project that produced the Executive
calculator in 1971. For the next five years, he
devoted himself to developing calculators, which —
are now considered as the precursors of the
modern home computer. In 1975 Sinclair
Radionics ceased trading, and Curry joined
Sinclair in a freelance operation called Science of
Cambridge. The new venture aimed to package
electronics components as kits.

One idea that sold well was a wristwatch

60 THE HOME COMPUTER ADVANCED COURSE

COURTESY OF ACORN

FROM LITTLE ACORNS. |
calculator. But Curry was also inspired by the
single-board computers that were emerging in the
US, and he set about developing a kit of his own.
This was called the MK14 (Microprocessor Kit
with 14 chips) and featured a National
Semiconductor microprocessor, 256 bytes of
RAM, a small fixed memory containing the
monitor, and the components needed to power
an eight-digit LED display.

Curry found that the company was constantly
supplying advice and ideas over the telephone to
electronics hobbyists and decided to take .on
Herman Hauser, a PhD student from Cambridge
University, to deal with these enquiries. However,
Curry’s ideas were soon diverging from Sinclair’s
and he decided it was time to start a company of
his own. With Hauser as his new partner, Curry
formed a company called the Cambridge
Processor Unit — a rather mischievous name if
you abbreviate it to CPU! Working from a small
office in Bridge Street, Cambridge, the men hired
themselves out as electronics and computer
consultants.

The success of the MK14, and developments
in the US, had clearly shown that what the
customers wanted was a computér in a box with
BASIC on board. Having written a fast version of
BASIC for machine control for one of its
consultancy projects, CPU decided to add this to
a machine and put it on the market. The machine
was called the Atom, and CPU adopted the name
Acorn for the company that was to market it. The
machine was primarily intended to capture the
educational market, but most schools thought
that the Basic deviated too much from the
Microsoft dialect to be acceptable. The machine
did, however, find much favour among hobbyists.
Acorn went ahead with a development of the
Atom, which was called the Proton and was
intended for use in laboratories and colleges.

But in 1981, while the Proton was in pre-
production, Curry heard that the BBC was
searching for a machine that would complement
its computer literacy programme. Curry’s
response was to demonstrate the capabilities of
the 6502 processor — not in the Proton, however,
but in a specially designed system.

The BBC specification was for a machine that
beginners would find easy to use and yet could be
expandable to a very high standard. The machine
should also offer good value for money (the
Corporation was initially specifying a target price
of £200). Against stiff opposition from Sinclair
Research, Acorn was given the job, and it created
the BBC Micro, which it is now producing at the
rate of 12,000 a month.

>

~~

qd)
> ©

anc

=

INS
a

er Adv

ki
;

lipem
:

mput 0

Wil a C VW >

if atl

A dream computer, —
Adream holiday,
anda sight for twenty sore eyes, ~

This week (issue 3), the well-known computer word or
phrase is hidden in the words “DRESS THE APE”

HOW TO ENTER
To enter the competition, first you must correctly identify
each week until issue 4 all four hidden words or phrases.
Then use your skill and knowledge of computing and your
sense of humour to invent a new piece of computer jargon,
no more than 5 words long, and give its definition in no
more than 15 words.

REMEMBER
Retain your answers to issues 1, 2, 3 and 4. Issue 4 will
contain the address and rules for competition entries.

THIS COMPETITION IS OPEN TO
EADERS IN THE U.K. AND EIRE ONLY

yes wed ap eke AE Se oeurnriy t
hy yoot tng. Lhe tuphay angie af fy aystwnrd 9

penta ie tes mebee seeutaes ich vomer nara reat. %

fiSdE wikd AO Abd deegicaad da Divkwy noheoledar get Sav
© Bvlay. We Lit dnt whde ere fee Buvsd lo

2y WHORVNAE Panetision, Fat ais Hae ata!

